
Nuclear Physics B190 [FS3] (1981) 205-216 
© North-Holland Publishing Company 

QUANTIZATION WITH A GLOBAL CONSTRAINT AND 
IR FINITENESS OF TWO-DIMENSIONAL GOLDSTONE SYSTEMS 

F. DAVID 1 

CEN-Saclay, Bofte Postale No. 2, 91190 Gif-sur-Yvette, France 

Received 22 December 1980 

A method of quantizing Goldstone systems with a global continuous symmetry by introducing a 
global constraint is presented. This procedure is used to study the IR finiteness of the weak coupling 
expansion of such models at two dimensions. In this scheme, the propagator is IR finite at any 
dimension and all observables are proved to be IR finite at d = 2. The IR properties of non-standard 
models are elucidated. 

1. Introduction 

It was r ecen t ly  p r o v e d  that  the  in f ra red  d ive rgences  which occur  in the  weak  

coupl ing  p e r t u r b a t i v e  expans ion  of t w o - d i m e n s i o n a l  field theor ies  and  s tat is t ical  

sys tems with  a g loba l  con t inuous  s y m m e t r y  d i s a p p e a r  when  look ing  at invar ian t  

quan t i t i e s  [1-3] ,  a l though  the expans ion  is p e r f o r m e d  in the  s p o n t a n e o u s l y  b r o k e n  

s y m m e t r y  phase ,  which does  not  exist  at  two d imens ions  [4, 5]. The  p roo f  of this fact  

[2], and  the p rev ious  ca lcu la t ions  on such m o d e l s  [6-10] ,  involve  the  in t roduc t ion  of 

an ex t ra  s y m m e t r y - b r e a k i n g  t e rm  which m a k e s  the  p e r t u r b a t i v e  expans ion  finite; 

this t e rm  be ing  set  to ze ro  at  the  end  of ca lcu la t ions  in o r d e r  to r ecove r  the  I R  limit.  

In this p a p e r  we a d o p t  a d i f ferent  a p p r o a c h  to this p r o b l e m .  W e  show tha t  it is 

poss ib le  to i n t roduce  a g loba l  cons t r a in t  in the  quan t i za t ion  of those  mode l s  in such a 

way  tha t  the  p e r t u r b a t i v e  expans ion  of any  quan t i t y  is I R  finite at two d imens ions .  

This  new quan t i za t i on  p r o c e d u r e  coinc ides  with the  usual  one  only  for  invar ian t  

obse rvab le s ,  whe re  we r ecove r  the  usual  IR- f in i t e  p e r t u r b a t i v e  expans ion .  

If this a p p r o a c h  seems  s imple r  in p r inc ip le  than  the d i rec t  p roo f  of ref. [2], we shall  

use,  in fact,  the  technica l  resul ts  of those  r e fe rences  to p r o v e  the  I R  f ini teness of the  

new p e r t u r b a t i v e  expans ion .  H o w e v e r ,  this new expans ion  leads  to m o r e  compl i -  

ca ted  ca lcu la t ions  than  the usual  one ,  so we th ink  tha t  its in teres t  l ies in a new insight  

in the  I R  p r o p e r t i e s  of t w o - d i m e n s i o n a l  G o l d s t o n e  systems.  

This  p a p e r  is o rgan i zed  as fol lows:  for s implic i ty ,  we t rea t  the  euc l idean  O ( N )  

n o n - l i n e a r  o- m o d e l  in deta i l .  In sect.  2 we p re sen t  the  quan t i za t ion  with a g loba l  

cons t ra in t ;  for  sake  of r igor  the  s tudy  is p e r f o r m e d  on a la t t ice  r egu la r i zed  theory .  W e  

p rove  tha t  the  i n t roduc t i on  of our  cons t ra in t  leads  only  to a change  in the  p r o p a g a t o r  

which b e c o m e s  I R  finite. The  I R  f ini teness of the  c o r r e s p o n d i n g  p e r t u r b a t i v e  
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expansion is proved in sect. 3. Finally, we discuss the case of other Goldstone models 
in sect. 4. In particular, our approach allows us to study the IR structure of the 
non-standard models introduced by Friedan in refs. [11, 12] and to prove that it is 
always possible to define an IR-finite perturbat ive limit, but not in a standard way. 

2. Quantization of the O ( N )  o" model  with a global constraint 

We consider the euclidean O(N)  ~r model  on a two-dimensional square lattice of 
spacing a and size L with periodic boundary conditions. The action is 

A = 1 52 a2[Vt ,S(x)]  2 (2.1) 
2t x 

where S(x) is an N-componen t  real field restricted on the sphere Su-1 by the 
constraint 

]S(X)] 2= 1 (2.2) 

and where V,  runs for the finite difference between two nearest  neighbours in 
direction ~ (/z = 1, 2). 

The weak coupling perturbat ive expansion is obtained by setting 

S'(x)  = x/tTr'(x) i = 1, N - 1 

= o'(x) = x/1 - tn2(x) i = N ,  (2.3) 

and by expanding in powers of t the integral generating the partition function, which 
reads, up to non-per turbat ive  terms 

2 

Z ( t ) = f  U d c r ' ( x ) e x p l - ½ a 2 ~ ( V , c f l ) 2 - ~ ( V ~ o ' ) 2 - ~ l n c r  ] . (2.4) 

As long as the size of the system, L, is finite, we expect no IR  divergences. 
However ,  we have always N - 1  Ooldstone modes which make the propagator  
undefined. Indeed, the quadratic part  of the action is 

1 
L,  a sin ~ - ] r r  t - -P, ,  (2.5) 

where ~'(p) is the Fourier t ransform of ~r(x): 

1 
7r(x) = ~ ~ e-i~x~'(p). (2.6) 

So A0 has a zero eigenvalue corresponding to the N -  1 modes p = 0 and is not 
invertible. As explained in sect. 1, this difficulty was usually removed by introducing 
a symmetry  breaking term (this is equivalent to introduce a mass and makes the 
propagator  well defined), then by taking the infinite volume limit and finally by using 
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the fact that O(N)  invariant quantities have an IR-finite limit when the symmetry-  

breaking term is set to zero [1, 2]. 
On the other hand, those Goldstone modes may be eliminated by introducing a 

global constraint which fixes the classical solution around which fluctuations are 
computed.  The most simple way in our case is to fix the field S in a given direction at 

some arbitrary point x0. So let us introduce the constraint 

S(xo) = So (2.7) 

in the integral (2.4). We get 

Zs°(t) = I @[S]6s°[S(x°)] exp (2.8) 

8so(S) is the Dirac measure  at the point So on the sphere SN-I. 9 [ S ]  is the integration 
measure [Ixd~'(x)/o'(x). In the same way, we define the average value of any 

function of the field F[S] with constraint (2.7) as 

(f)so = @[S]8so[S(xo)]f[S] exp -A[S] . (2.9) 

We now look at the corresponding perturbat ive expansion. Choosing So as the 
direction o- in (2.3), the constraint reads 

rr (x0) = 0 ,  (2.10) 

or equivalently in dual space 

~ i (p )  e-iPXo = 0 .  (2.11) 
P 

If we eliminate the zero modes in (2.4) via (2.11), the quadratic part  of the action is 
now given by (2.5), where the summation over p is restricted to p ~ 0 and is now 
invertible. Inverting A0 and inserting constraint (2.11) in (2.6), we get for the 
propagator  (in position space) 

1 w (e-'PX-e-'Px°)(e'"Y -e'PX°) 
D(x, y ) = ~  ~ --2-7--~--~ - - : - T 7 1 - -  • (2.12) 

p•o (4/a )}~,sm (~ap,) 

The propagator  is now well defined, but translation invariance has been broken by 
the constraint, so the propagator  depends on x0. 

Moreover ,  it is easy to see that interaction terms in (2.4) are not modified by the 
constraint. So, in the perturbat ive expansion defined by constraint (2.7), the graphs 
are the same as in the usual perturbat ive expansion, only the propagator  is modified 
and is given by (2.12). 

The crucial point is that this propagator  remains finite in the infinite volume limit. 
Indeed, as L ~ 00, the summation over  p becomes an integration in the first Brillouin 
zone, but the integral is convergent  at p = 0. So the new propagator  D(x, y) is really 
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IR finite. This procedure may, of course, be per formed at any dimension d t> 1 
without changing this conclusion. 

The previous study, per formed on a lattice for sake of rigor, shows that the 
introduction of constraint (2.7) in the quantization leads only to a change in the 
propagator .  This procedure may be per formed whatever  the ultraviolet regulator is. 
Indeed, from (2.12), the new propagator  D is related to the usual IR-divergent  one 

Do by 

D(x,  y) - -Do(x ,  y ) - D o ( x ,  xo)-Do(xo,  y)+D0(xo,  Xo). (2.13) 

Eq. (2.13) may be generalized to any kind of regularized propagator  Do and is 
sufficient to define an IR-finite propagator  D (see fig. 1). 

3. IR finiteness of the constrained perturbation at two dimensions 

We now study the IR structure of this new perturbat ive expansion at two 
dimensions. As explained in sect. 1, for an arbitrary function F[S] ,  its average value 
(F)so appears  to be IR finite, whether  F is O(N)  invariant or not. 

This is not a surprising fact. Indeed, the constrained average value of F (F being a 
function of the field S at points X l . . .  xp) may be written as the unconstrained 
average value of some O(N)  invariant function of S at the points x0, Xl • •. xp (x0 
being the point where the constraint is fixed). So, the IR finiteness of the constrained 
perturbat ive expansion is equivalent to the IR finiteness of invariant observables in 

the usual perturbat ive scheme. 
However ,  it is interesting to look at the structure of the IR  divergences and at their 

cancellations in this new perturbat ive scheme: IR divergences of any graph appear  to 
be contained only in "disconnected par ts"  generated by the new propagator .  Up to 
these "disconnected par ts"  which give divergences in power of the volume, the 
remaining "connected par ts"  of any graph are IR  finite. 

Moreover ,  a simple argument  connects the disconnected parts to the partition 
function and shows that they combine into an IR-finite contribution depending only 

on geometrical  propert ies of the model. 
From (2.13), any graph computed  with the new propagator  D may be expressed in 

terms of graphs computed with the usual one Do. More precisely, let us consider 
some function F and some graph G of the perturbat ive expansion of (F); we have 

G [ D ] =  E (-1)n~c)(~[Do], (3.1) 

X 

X o  X o  0 

o/ \ • ) -- 0 ,0 - -  0 -- 0 ÷ 0 0 

y x y x y x y x y 

Fig. 1. The new propagator D expressed in terms of the usual one Do. 
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where  G[D] (G[D0])  is the  in tegra l  of the  g raph  G c o m p u t e d  with  the  p r o p a g a t o r  D 

(Do). The  sum runs  ove r  all g raphs  G o b t a i n e d  f rom G by d i sconnec t ing  an a rb i t r a ry  

n u m b e r  n (G)  of end  po in t s  of l ines of G and  by a t t ach ing  t h e m  at the  po in t  Xo; a 

fac tor  ( - 1 )  is a t t a ched  to each  d i s connec t ed  end point .  A n  add i t i ona l  I R  cut  off is 

i n t r o d u c e d  in o r d e r  to def ine  Do (for ins tance  we may  t ake  for Do its usual  la t t ice  

fo rm w h e r e  we have  e l im ina t ed  the  ze ro  mode) :  

1 e - i p ( x - y )  

D ° ( x - Y ) = ~  p~o(4/a2) ~ ,  sin2 l(~ap,)" (3.2) 

It is easy  to see  tha t  this o p e r a t i o n  gives zero  if a de r iva t ive  coupl ing  is a t t a ched  to 

the  end  po in t  of a p r o p a g a t o r  which is d i sconnec ted .  So the  f o r m e r  ope ra t i on ,  which 

shall  be  d e n o t e d  9 ,  has only  to be  p e r f o r m e d  on end poin ts  which are  not  a t t a c h e d  to 

de r iva t ives  of the  field. 

As  long as the  graphs  CJ r ema in  connec t ed  to the  ex te rna l  ver t ices ,  the  analysis  of 

ref. [2] shows that  (~[D0] wou ld  have  logar i thmic  I R  d ivergences* .  A m o r e  ser ious  

p r o b l e m  comes  f rom the  graphs  G which have  d i s connec t ed  par t s  (not  a t t ached  to 

ex te rna l  ver t ices) ,  s ince those  d i s connec t ed  par t s  will give con t r ibu t ions  in p o w e r  of 

the  vo lume .  In o r d e r  to t r ea t  those  d ivergences ,  we first have  to give a r igorous  

fo rmu la t i on  to the  a b o v e  cons idera t ions .  

Definition 

Let  G be  a g raph  o b t a i n e d  f rom G by the o p e r a t i o n  9 .  

T h e  d i s connec t ed  par t  V(G,  G) assoc ia ted  to G in G is def ined  as the  g rea tes t  

d i s connec t ed  g raph  V c G which may  be o b t a i n e d  at some  s tage of the  o p e r a t i o n  

when d i sconnec t ing  the l ines of G to get  G in every  poss ib le  order .  (This def ines  

V(G ,  G) in an un ique  way).  

Then ,  let  us d e c o m p o s e  the  o p e r a t i o n  @ ( G ~ C I )  into th ree  s teps  (see fig. 2): 

(a) Firs t ,  we d i sconnec t  the  n (V) end  poin ts  of l ines of (G - V) a t t ached  to V(G ,  G) 

so tha t  we ob ta in  the  graph  V and a g raph  C with n (V) l ines a t t ached  to x0(C may  be 

seen  as the  g raph  o b t a i n e d  by shr ink ing  V into the  ve r tex  x0 in G).  If V = ~, n (V) = 0 

and C = G.  

(b) Second ,  we d i sconnec t  the  l ines of V which are  d i s connec t ed  in (3, so tha t  we 

ob t a in  a g raph  "~. 

(c) Thi rd ,  we d i sconnec t  the  r ema in ing  l ines of C. In this o p e r a t i o n  we have 

d i s connec t ed  and a t t ached  to x0 n (C) end  poin ts  of l ines of C, which were  not  a l r e a dy  

When dealing with some UV regularization (in particular the lattice regularization), more serious IR 
divergences (in power of the IR cut off) are known to occur graph by graph and to cancel between 
different graphs (the measure terms being essential for such cancellations). It may be proved [13] that 
those divergences disappear in each graph when a first UV subtraction is performed (subtraction of 
quadratic divergences at zero momenta). The corresponding counterterms are in fact zero, so that the 
theory is not modified by those subtractions. In this section, such subtractions are assumed to be 
performed if necessary so that only logarithmic IR divergences are present and the analysis of ref. [2] 
may be performed without this additional difficulty. 
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II 1 I ' I 1 1 | 

i1111 co, 
G 

Fig. 2. The three steps of operation @ which define the connected and disconnected parts of CJ. 

attached to x0 in C, and without generating a new disconnected part in order to 
obtain a graph C; let us call this operation @o 

Definition 

will be called the disconnected part of G, C the connected part of CJ. 
Each connected component  of (~ is attached to some external vertex; a connected 

component  of ~' may only be attached to x0. 
Now, we decompose the summation over all graphs G in (3.1) as a summation over 

all possible V c G, times a summation over all g' obtained from V by operation 9 ,  
times a summation over all C obtained from C by the operation ~c .  The summation 
over all V gives the integral associated to the disconnected part V, which is simply 
V[D]. Defining the integral associated to the connected part C, Cconn[D], as 

Cconn[D]  = • (-1)"~e)C[D0], (3.3) 

g0c 

we finally get the decomposition into connected and disconnected parts: 

G [ D ] =  E (-1)"(V)V[D]'Ccon,[D] . (3.4) 
(v.c) 

Now we can discuss the IR structure of G[D]. We first consider the connected parts. 
We have the following result. 

Lemma 1 

For any connected part C in some G, Cconn [D] is IR finite. 

Proof 

The graphs C have the same IR structure as the usual graphs G of the model. So we 
can use the results of ref. [2], which give the IR structure of any graph computed with 
the propagator  Do. In our notation, lemma 2.1 of ref. [2] reads: 

Given any graph ~7, the IR behaviour of C[D0] is given by 

C[D0] = • fp E[Do]-  [C/--'~[Do] + negl. terms.  (3.5) 
EcC 

dominant 
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In (3.5), the sum runs over  all "dominant  subgraphs" E in C defined by the 

following conditions: 
(D.1): E contains all external vertices of (S (including Xo). 
(D.2): E has no disconnected part  (each connected component  of E contains at 

least one external vertex). 
(D.3): The end points of lines of C - E  attached to a vertex of E do not carry a 

derivative coupling. 
fp E[Do]  is the IR-finite part  of the amplitude of the dominant  E, and is a finite 

amplitude, independent  of the IR  cut off. 

[C/E][Do] is the amplitude of the graph obtained by shrinking E into a vertex of (~, 
and diverges logarithmically as the IR  cut off is set to zero (see fig. 3). 

Now, for a given C, let us consider some C and some dominant  E ~ C in C. We 
consider the set ~ of the end points of lines of C which: 

(a) do not belong to E, 
(b) were attached in C to vertices different from x0, and which belong to E in C. 
The set ~ is not empty,  otherwise C - E  would be a disconnected part  of C, which 

contradicts the fact that C has no disconnected part. We then consider all graphs C' 
obtained from C by attaching the end points belonging to ~ either to x0 or to their 
original vertex in E in all possible ways. The graphs C' are always obtained from C by 

the operat ion @c a n d s e  present  in (3.4). Moreover,  E is a dominant  subgraph of any 
C' and the graphs [C ' /E]  coincide. So, from (3.5) the dominant  E gives the same IR 
divergence in each C' (see fig. 3). When summing over  every (2' in (3.4), it is easy to 
see that the divergences associated to E cancel owing to the factor ( -1 )  n¢~'~. This 

argument  may be applied for any possible dominant  in (3.4). This ensures the result 
of l emma 1. 

We now consider the disconnected parts V. As ment ioned above, for a given V, 
V[D] is not a priori IR  finite. We shall prove that, summing upon different V, we get 
an IR  finite contribution. 

Given a graph G of the perturbat ive expansion of some function F l i t ] ,  any 
possible disconnected part  V in G is a graph of the observable 

1 0 0 
V~ n! Oa q Oa'" eV["(x) "] Vl'~lla=°' (3.6) 

~ E 
Fig. 3. The factorization of IR divergences of C in terms of essentials E as given by eq. (3.5). Lines whose 

end points belong to the set ~f are drawn as parallel full and dashed lines. 
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where V[Tr] is the sum of all interaction terms in the functional integral (2.4) 

and fi is the set of n indices, fi = {i1 • • • i.}. Similarly, the corresponding graph C is a 
graph of the observable 

FA~(xo) = F [ T r ] T r q ( X o )  . . . 7 r i " ( x o )  . (3.8) 

Counting factors and symmetry  factors of the graphs manage in such a way that, 
when summing over  all graphs G to obtain (F)so, eq. (3.4) can be generalized to 

E(FA (Xo)>So (V~)so, (3.9) (F)SO = 
fi  c o n n  

where (FA~(Xo))so is the sum of the C[D] ... .  over all graphs C corresponding to the 
opera tor  FAd(Xo), and where (V~)so is the sum of the V[D] over all graphs V 
corresponding to V~. From lemma 1, (FA~(Xo)JoO is known to be IR finite graph by 
graph. We now prove that each (V~)SO is also finite. 

Lem ma  2 

(V~)So is simply given by 

1 0 ~ 1 ( 3 . 1 0 )  
( Vi-a)so -- Yl ! tga'l Oa '° .,/1---Z~a 2 ~=o 

Proof 

Let us consider the generating function of the (V~)SO, 

V(a)  =3~ ~ a (V~)So. (3.11) 
fi  

From (3.6), V(a) is defined by 

1 e_Ao[rr]+V[~r_a] 
V(a )=-~so f  ~ d~r(x)8[zr (Xo)] . (3.12) 

Performing the change of coordinate 1r ~ 1r + a on the sphere SN-1, we get 

1 Zsca) 
V(a) x/l_---S~ a ZSO' (3.13) 

where S(a) is the point on the sphere defined as 

S(a) = S0(1 - ta 2) + x/ta. (3.14) 

The factor 1 / x / ~ a  comes from the constraint. Indeed, the Dirac measure on the 
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sphere is, in our coordinate system, 

6S(a) (S) = ~ / X ~ a  6 N 1 ( ~ .  _ a ) .  (3.15) 

From O(N)  invariance, Zs(a) = Zso. So V(a) is obviously IR finite and (3.13) leads to 

lemma 2. 
So, lemmas 1, 2 and (3.9) ensure the IR finiteness of any observable F[S]. An 

interesting point is that we have used the global symmetry  of the model  only in the 

proof of l emma 2, when identifying the partition functions computed  with different 

constraints. 
Finally let us discuss the relation between the results of our procedure and of the 

usual one. For O(N)  invariant observables F, (F)so is, in fact, independent  of the 
constraint, and we recover the usual IR-finite result. For non-invariant  observables,  
we have to average over all the constraints to get the physical average value of F. But 

it is easy to see that 

(F) = fsN_, dSo (F)so = <F)so, (3.16) 

where P is the projection of F upon the subspace of O(N)  invariant functions defined 
a s  

F[S]Io(N ) dR F[R- 'S] .  (3.17) 

So, averaging a non-invariant  observable over  the constraint, we recover a finite 
invariant observable.  

4. IR structure of general models  

The arguments  of sect. 3 may be applied without difficulties to the non-linear 
models which have a different global symmetry  group. In this section we want to 
apply our approach to the IR structure of the general non-linear o" models discussed 
by Friedan in ref. [5]. Such models are constructed on a general (non-homogeneous)  

r iemannian space M by the action 

1 
f (x)gij(~b) a~,Cb (x), (4.1) A [ ~ b ] = ~  ddx 8,~ i 

where the field ~(x)  is an element  on M and where g;;(~) is the metric tensor on M at 
the point ~ (in the coordinate system ~hi). In such general models there is no natural 
measure on the space of fields, so that we have to choose an a priori measure dM~ 

on M: 

~[~b] = 1-I dMck(x). (4.2) 
x 

So the parameters  of the model are the metric g/t and the measure  dM~b. 
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In refs. [12, 13], Friedan studied the renormalization propert ies of such models. 
He  showed that those models are renormalizable at 2 dimensions and established the 
renormalizat ion group equations (for the metric and the measure) at d -- 2 + e. Since 
there is no symmetry  in these models, it is necessary to introduce a constraint to fix 
the point on M around which one computes  fluctuations. The sorts of constraints we 

have presented in sect. 2 for the O(N)  model (that is to fix the field at some point) 
have some advantages over  the constraints used in ref. [12]: they are independent  of 
the coordinate system chosen on M and it is not necessary to introduce ghost fields 
(the jacobian of the constraint is a constant). 

So, let us consider the general model  defined on M by (4.1) and (4.2). As in sect. 2, 
we introduce the constraint ~b(x0) = ~b0 (where 4~o is some point on M), so that we 
define 

Zq~° = f ~ [ ~ ] ~ ° [ ( ~ ( x ° ) ]  e A[rb] , (4.3) 

where 8~o is the Dirac measure  at ~b0, defined in a coordinate system ~b i as 

= i - , / , ; ) .  (4.4) 

Similarly, for any function of the fields F[~b ], we define 

1 e_A[,~ ] 
(F)e,o = Z~o I @Ed']6,oE4,(Xo)]F[dq . (4.5) 

The conclusions of sect. 2 remain valid: the propagator  is given by (2.13) and the 
interaction terms remain unchanged, the perturbat ive expansion is finite as long as 
the volume V is finite. 

If we now take the infinite volume limit (the U V  cut off being fixed), a difference 
with the case of models  with a global symmetry  appears. Indeed, the IR  divergences 

in powers of the volume have no reason to be cancelled by the measure terms which 
are a free paramete r  of the model.  (See remark  in sect. 3). This is a consequence of 
the fact that, in general, fluctuations will (perturbatively) generate a mass of the order 
of the UV cut off while we expand around a massless theory. As explained in sect. 3, 
these volume terms are cancelled only if quadratic U V  divergences are subtracted at 
zero momenta ;  power counting shows that the corresponding counter terms will 
appear  as a renormalization of the m e a s u r e  dMd~, which has to be per formed in order 
to avoid perturbat ive generation of a mass. So the measure has to be adjusted order 
by order to keep a massless theory; the result at first order is 

dM~ = d~b i I g l 1/2 e'R/48+°('2~, (4.6) 

where R is the scalar curvature, which is in agreement  with ref. [12]. 
If the measure is chosen in that way, volume terms disappear and we may apply the 

analysis of sect 3. We may define the operators  Va and FAr'(Xo) by (3.6) and (3.8) 
(those operators  depend on the coordinate system) and eq. (3.9) remains valid. Since 
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l emma 1 involves only graphical arguments,  the (FAa(xo))~R, are IR finite, but the 

(Va),o are IR  divergent. Indeed,  the proof of l emma 2 runs in the general case up to 

eq. (3.13), which now reads 

1 a" r I z* 1 (4.7) 

but in the non-standard case there is no symmetry principle which ensures that 
Z ,  = Z6o. Since powers of the volume have been eliminated by the choice of the 

measure,  it may be proved that Z,/Ze~o diverges as powers of In V. However ,  f rom 
(3.9) and (3.12), we deduce that 

1 (FA~xo) . . . .  1 .  (F)6 o -Ig(~o)l l /2Zeao ~fi cgq~ ~ ( [ g ( 4 } ) 1 1 / 2 Z , ) , = , o  . (4.8) 

So, the IR  divergences of the model  are entirely contained in the divergences of the 
partition functions Z,~*. 

In fact, we have yet some arbitrariness in the choice of the measure.  Indeed we may 
add terms in (1 /V)  In p V in dMd~, s o  that we modify the logarithmic divergences Z,~. 
In particular, it is possible to adjust the measure by ad hoc terms in (1 /V)  In p V to 

have 

Z ,  = Z , o ,  V~b ~ M .  (4.9) 

From (4.8), it follows that any (F)6o is IR finite. The average value of F, defined as the 
sum over  all possible constraints, 

fM ddPolg( qSo)ll /2 ze~o(F),bo 
(F) = , (4.10). 

IM d4>o[g( C}olll/2 Z ~o 

is also IR  finite. The ad hoc measure to obtain (4.11) is for the square lattice model 

dM(gb)=d&i]g(&)ll/2exp{tR(~)[~+l (~Do(O)-4~)]+O(t2)} (4.11) 

where D0(0) is given by (3.2) and diverges as In V. But it is sufficient to adjust the 
measure  in order to have Z~/Z6o = an arbitrary function of ~b and t (which is always 
possible) to get an IR-finite perturbat ive expansion for any observable.  So, it is 

possible to adjust the measure in order to define an IR-finite limit, but this limit is not 
"natural" ,  in that sense that it is not unique. 

For the standard models defined on a homogeneous  space M with the canonical 
invariant measure,  eq. (4.9) is automatically satisfied, this ensures the IR finiteness, 

as for the O(N)  model.  

* Eq. (4.8) is very likely true even if the measure is not adjusted to (4.6), the FA n remaining finite and the 
divergences in power of the volume being contained in Z,~. 
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T h e  a u t h o r  w a n t s  to  t h a n k  E .  Br6z in ,  D .  F r i e d a n  and  C.  I t z y k s o n  fo r  t he i r  i n t e r e s t  

a n d  fo r  h e l p f u l  d i scuss ions .  
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